CSCI 210: Computer Architecture
Lecture 36: Associative Caches

Stephen Checkoway
Oberlin College

May 20, 2022
Slides from Cynthia Taylor

Announcements

Problem Set 12 due Thursday
Cache Lab (final project) due on the day of the final exam

Course evals now available!
— Extra credit for everyone if more than 90% of the class fills them out

Office Hours today 13:30 — 14:30

ASSOCIATIVE CACHES

Direct-mapped Cache

Direct mapped

* Each block goes into 1 spot

Block# 01234567

Data

* Only search one entry
* Associativity =1

Tag

* What if we allow blocks to go S T

into more than one spot?

Fully-associative Cache

* Allow a given block to go in any Fully associative
cache entry

* Requires all entries to be

Dat
searched at once o

* Comparator per entry
(expensive)

1
2

s TTTTTTT

Tag

n-way Set-associative Cache

Each set contains n entries
Block number determines which set

— (Block address) modulo (#Sets in cache)

Search all entries in a given set at once

n comparators (less expensive)

Set associative

Set# O

Data

1

2

3

1

Ta
g2

Search T T

Spectrum of associativity for 8-entry cache

One-way set associative
(direct mapped)

Block Tag Data

(1) Two-way set associative
2 Set Tag Data Tag Data
3 0

4 1

5 2

6 3

7

Four-way set associative

Set Tag Data Tag Data Tag Data Tag Data
0

1

Eight-way set associative (fully associative)

Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data

Memory addresses, block addresses, offsets

o 01 01 01110 O0O010O0O011 0101100101 0@0UD0T11

Block size of 32 bytes (not bits!)
16-block, 2-way set associative cache

Each address

— A (32 — 5)-bit block address (in purple and
blue)

— A 5-bit offset into the block (in green)
Block address can be divided into
— A (32 — 3 —5)-bit tag (purple)

— A 3-bit cache index (blue)

VIt |vata |ViTg |vata
0 0

0 0

0 1 3F2084 ..

0 0

0 0

1 15C9AC 1 28477D ..

0 0

0 0

Set Associative Cache Organization

Address

3130---12111098---3210

422 8
Tag
Index

Index V Tag Data V Tag Data V Tag V Tag Data
0
1
2

p [< [p p [[p
253
254
255

J22 32
(= (= (= (=

Hit

é—toJ multiplexo)
!

Given a 256-entry, 8-way set associative cache with a block size
of 64 bytes, how many bits are in the tag, index, and offset?

" Thagnis lindecbits | ofsetbits
A 32-5-6=21 5 6
B 32-3-5=24 3 5
C 32-8-6=18 8 6
D 32-6-5=21 6 5
E 32-6—-3=23 6 3

Given a 256-entry, fully associative cache with a block size of 64
bytes, how many bits are in the tag, index, and offset?

" Thagnis lindecbits | ofsetbits
A 32-5-6=21 1 6
B 32-3-5=24 3 5
C 32-8-6=18 8 6
D 32-6-5=21 6 5
E 32-0-6=26 0 6

Associativity Example

 Compare 4-block caches

— Direct mapped, 2-way set associative, fully associative

— Block access sequence: 0, 8,0, 6, 8

* Direct mapped

Block Cache Hit/miss Cache content after access
address index
1 2
0 0
8 0
0 0
6 2
8 0

Associativity Example: 0, 8, 0, 6, 8

* 2-way set associative

Block Cache Hit/miss Cache content after access
address index Set0 Set 1
0 0
8 0
0 0
6 0
8 0

= Fully associative

Block Hit/miss Cache content after access
address

0

| O] O ©o

Replacement Policy

* Direct mapped: no choice

* Set associative
— Prefer non-valid entry, if there is one
— Otherwise, choose among entries in the set
— Goal: Choose an entry we will not use in the future

Replacement Policy

e Least-recently used (LRU)

— Choose the one unused for the longest time
* Simple for 2-way, manageable for 4-way, too hard beyond that

e Random

— Gives approximately the same performance as LRU for high
associativity

Three types of cache misses

block address of misses

 Compulsory (or cold-start) misses

4 tag data
— first access to the data. 1§
. . 4

* Capacity misses 8 M eacn
. . , cache

— we missed only because the cache isn’t 22
big enough. 8
20
e Conflict misses 2
12
— we missed because the data maps to the 8

same index as other data that forced it 4

out of the cache.

Cache miss example (from StackOverflow)

32 kB direct-mapped cache

1. You repeatedly iterate over a 128 kB array

— All misses but the first access to each line are capacity misses
because the array does not fit in cache; the first are compulsory
misses

2. You iterate over two 8 kB arrays that map to the same cache
indices

— These are conflict misses because if you changed the locations of
the arrays to be consecutive, then both would fit in the cache

https://stackoverflow.com/a/33336918

Cache Miss Type

Suppose you experience a cache miss

on a block (let's call it block A). You A Compulsory
have accessed block A in the past. B Capacity
There have been precisely 1027 C Conflict
different blocks accessed between your D Both Capacity and
last access to block A and your current Conflict

E None of the above

miss. Your block size is 32-bytes and

you have a 64 kB cache (recall a kB =
1024 bytes). What kind of miss was
this?

CACHE SIMULATOR PROJECT

Cache Simulator

* Take in a trace of load/stores from a real program

* Simulate running the program on a given cache

* Calculate how well a given cache would perform for that trace

Cache Parameters

* Always: Write-allocate, write-back, LRU replacement

* Change:
— Cache size
— Block size
— Associativity
— Miss penalty

Address Trace

Load/Store Address InstructionCount

7fffed80
10010000
10010060
10010030
10010004
10010064
10010034

KR H HH K
H O ORr OO O
B wWwo s W

L/S: O for load, 1 for store

Simulation Results

Simulation results:
execution time
instructions
memory accesses
overall miss rate
load miss rate
CPI
average memory access time
dirty evictions
load misses
store misses
load hits
store hits

52268708
5136716
1957764

0.79
0.88
10.18
24.07
225876
1525974
30034
205909
195847

cycles

cycles

What do you need to do?

e Create data structures that emulate a cache

* For each instruction, find where it would go in the cache, check
if it’s already there

* Calculate number of miss penalty cycles, load misses, store
misses, instructions, etc.

Reading

e Next lecture: More Caches!
— Section 6.4

* Problem Set 12 due Friday

 Cache lab

