
CSCI 210: Computer Architecture

Lecture 36: Associative Caches

Stephen Checkoway

Oberlin College

May 20, 2022

Slides from Cynthia Taylor

1

Announcements

• Problem Set 12 due Thursday

• Cache Lab (final project) due on the day of the final exam

• Course evals now available!

– Extra credit for everyone if more than 90% of the class fills them out

• Office Hours today 13:30 – 14:30

ASSOCIATIVE CACHES

Direct-mapped Cache

• Each block goes into 1 spot

• Only search one entry

• Associativity = 1

• What if we allow blocks to go

into more than one spot?

Fully-associative Cache

• Allow a given block to go in any

cache entry

• Requires all entries to be

searched at once

• Comparator per entry

(expensive)

n-way Set-associative Cache

• Each set contains n entries

• Block number determines which set

– (Block address) modulo (#Sets in cache)

• Search all entries in a given set at once

• n comparators (less expensive)

Spectrum of associativity for 8-entry cache

Memory addresses, block addresses, offsets

• Block size of 32 bytes (not bits!)

• 16-block, 2-way set associative cache

• Each address

– A (32 – 5)-bit block address (in purple and
blue)

– A 5-bit offset into the block (in green)

• Block address can be divided into

– A (32 – 3 – 5)-bit tag (purple)

– A 3-bit cache index (blue)

0 0 0 1 0 1 0 1 1 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 0 1 0 0 0 1 1

V Tag Data V Tag Data

0 0

0 0

0 1 3F2084 …

0 0

0 0

1 15C9AC … 1 28477D …

0 0

0 0

Set Associative Cache Organization

Given a 256-entry, 8-way set associative cache with a block size

of 64 bytes, how many bits are in the tag, index, and offset?

Tag bits Index bits Offset bits

A 32 – 5 – 6 = 21 5 6

B 32 – 3 – 5 = 24 3 5

C 32 – 8 – 6 = 18 8 6

D 32 – 6 – 5 = 21 6 5

E 32 – 6 – 3 = 23 6 3

Given a 256-entry, fully associative cache with a block size of 64

bytes, how many bits are in the tag, index, and offset?

Tag bits Index bits Offset bits

A 32 – 5 – 6 = 21 1 6

B 32 – 3 – 5 = 24 3 5

C 32 – 8 – 6 = 18 8 6

D 32 – 6 – 5 = 21 6 5

E 32 – 0 – 6 = 26 0 6

Associativity Example

• Compare 4-block caches

– Direct mapped, 2-way set associative, fully associative

– Block access sequence: 0, 8, 0, 6, 8

• Direct mapped

Block

address

Cache

index

Hit/miss Cache content after access

0 1 2 3

0 0

8 0

0 0

6 2

8 0

Associativity Example: 0, 8, 0, 6, 8

• 2-way set associative
Block

address

Cache

index

Hit/miss Cache content after access

Set 0 Set 1

0 0

8 0

0 0

6 0

8 0

n Fully associative

Block

address

Hit/miss Cache content after access

0

8

0

6

8

Replacement Policy

• Direct mapped: no choice

• Set associative
– Prefer non-valid entry, if there is one

– Otherwise, choose among entries in the set

– Goal: Choose an entry we will not use in the future

Replacement Policy

• Least-recently used (LRU)
– Choose the one unused for the longest time

• Simple for 2-way, manageable for 4-way, too hard beyond that

• Random
– Gives approximately the same performance as LRU for high

associativity

Three types of cache misses

• Compulsory (or cold-start) misses

– first access to the data.

• Capacity misses

– we missed only because the cache isn’t

big enough.

• Conflict misses

– we missed because the data maps to the

same index as other data that forced it

out of the cache.

tag data

block address of misses

4

8

12

4

8

20

4

8

20

24

12

8

4

DM cache

Cache miss example (from StackOverflow)

32 kB direct-mapped cache

1. You repeatedly iterate over a 128 kB array

– All misses but the first access to each line are capacity misses

because the array does not fit in cache; the first are compulsory
misses

2. You iterate over two 8 kB arrays that map to the same cache
indices

– These are conflict misses because if you changed the locations of
the arrays to be consecutive, then both would fit in the cache

https://stackoverflow.com/a/33336918

Cache Miss Type

Suppose you experience a cache miss

on a block (let's call it block A). You

have accessed block A in the past.

There have been precisely 1027

different blocks accessed between your

last access to block A and your current

miss. Your block size is 32-bytes and

you have a 64 kB cache (recall a kB =

1024 bytes). What kind of miss was

this?

Selection Cache Miss

A Compulsory

B Capacity

C Conflict

D Both Capacity and

Conflict

E None of the above

CACHE SIMULATOR PROJECT

Cache Simulator

• Take in a trace of load/stores from a real program

• Simulate running the program on a given cache

• Calculate how well a given cache would perform for that trace

Cache Parameters

• Always: Write-allocate, write-back, LRU replacement

• Change:

– Cache size

– Block size

– Associativity

– Miss penalty

Address Trace

Load/Store Address InstructionCount

0 7fffed80 1

0 10010000 10

0 10010060 3

1 10010030 4

0 10010004 6

0 10010064 3

1 10010034 4

L/S: 0 for load, 1 for store

Simulation Results

Simulation results:

execution time 52268708 cycles

instructions 5136716

memory accesses 1957764

overall miss rate 0.79

load miss rate 0.88

CPI 10.18

average memory access time 24.07 cycles

dirty evictions 225876

load_misses 1525974

store_misses 30034

load_hits 205909

store_hits 195847

What do you need to do?

• Create data structures that emulate a cache

• For each instruction, find where it would go in the cache, check

if it’s already there

• Calculate number of miss penalty cycles, load misses, store

misses, instructions, etc.

Reading

• Next lecture: More Caches!

– Section 6.4

• Problem Set 12 due Friday

• Cache lab

25

